Zupełnie nowy obraz elektroniki według badań IFJ PAN

Nadrzędna kategoria: Wiadomości Naukowe

Wśród prostych układów elektronicznych, zbudowanych z zaledwie paru elementów, wiele zachowuje się chaotycznie, w niezwykle skomplikowany, praktycznie niemożliwy do przewidzenia sposób. Fizycy z Instytutu Fizyki Jądrowej PAN odkryli, przebadali i opisali kilkadziesiąt nowych, nietypowych układów tego typu (są do pobrania w internecie). Co ciekawe, jeden generuje impulsy napięcia podobne do wytwarzanych przez neurony, robi to jednak tysiące razy szybciej.

Zaledwie kilka tranzystorów, oporników, kondensatorów i cewek wystarczy do zbudowania układów elektronicznych zachowujących się w sposób praktycznie niemożliwy do przewidzenia. Nawet w tak prostych układach chaotyczne oscylacje o skomplikowanej naturze okazują się być nie wyjątkiem, lecz normą, wykazali naukowcy z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie. W publikacji w czasopiśmie „Chaos” przedstawili oni 49 nowych, nietypowych chaotycznych oscylatorów elektronicznych – nie zaprojektowanych, lecz odkrytych za pomocą symulacji komputerowych.

– Elektronika zwykle kojarzy się z urządzeniami działającymi precyzyjnie i zawsze zgodnie z oczekiwaniami. Z naszych badań wyłania się jej zupełnie inny obraz. Już w układach elektronicznych zawierających ledwie jeden czy dwa tranzystory chaos okazuje się wszechobecny! Przewidywalne i zawsze takie same reakcje urządzeń elektronicznych, używanych przez nas wszystkich na co dzień, to nie odzwierciedlenie natury elektroniki, lecz wysiłków projektantów – mówi pierwszy autor publikacji, dr Ludovico Minati (IFJ PAN).

Potocznie przez chaos rozumiemy brak porządku. W fizyce pojęcie to funkcjonuje nieco inaczej: o układzie mówi się, że zachowuje się chaotycznie, gdy nawet bardzo małe zmiany parametrów wejściowych skutkują dużymi zmianami na wyjściu. Ponieważ różnego typu fluktuacje są naturalną cechą świata, w praktyce układy chaotyczne wykazują ogromne bogactwo zachowań – tak wielkie, że precyzyjne przewidzenie ich reakcji jest bardzo trudne, a nierzadko wręcz niemożliwe. Układ może więc sprawiać wrażenie zachowującego się zupełnie przypadkowo, mimo że w rzeczywistości jego ewolucja przebiega wedle pewnego skomplikowanego wzorca.

Zachowania chaotyczne są tak złożone, że do dziś nie ma metod pozwalających na efektywne projektowanie obwodów elektronicznych tego typu. Fizycy z IFJ PAN podeszli więc do problemu inaczej. Zamiast od podstaw konstruować chaotyczne oscylatory, zdecydowali się je... odkrywać. Strukturę układów, tworzoną z elementów dostępnych komercyjnie, odwzorowywano jako ciąg 85 bitów. Modelowane układy w maksymalnej konfiguracji składały się ze źródła zasilania, dwóch tranzystorów, opornika i sześciu kondensatorów lub cewek, połączonych w obwód zawierający osiem węzłów. Tak przygotowane ciągi bitów poddawano następnie przypadkowym modyfikacjom. Symulacje zrealizowano na superkomputerze Cray XD1.

– Nasze poszukiwania odbywały się metodą na ślepo, w gigantycznej przestrzeni oferującej 2 do potęgi 85 możliwych kombinacji. W trakcie symulacji przeanalizowaliśmy mniej więcej dwa miliony układów, a więc ekstremalnie mały obszar całej dostępnej przestrzeni. W tym gronie ok. 2500 układów wykazywało interesujące zachowania – mówi dr Minati i podkreśla, że chaotyczne oscylatory elektroniczne były znane już wcześniej. Dotychczas wydawało się jednak, że występują tylko w kilku odmianach, a ich skonstruowanie wymaga pewnego wysiłku i odpowiedniej złożoności układu.

Fizycy z IFJ PAN analizowali działanie nowych układów za pomocą programu SPICE, powszechnie stosowanego przy projektowaniu obwodów elektronicznych. W przypadku zachowań chaotycznych możliwości symulacyjne SPICE okazały się jednak niewystarczające. Dlatego 100 najciekawszych układów zbudowano fizycznie i przebadano w laboratorium. W celu poprawienia jakości generowanych sygnałów w trakcie testów niejednokrotnie dokonywano delikatnego „tuningu” parametrów elementów składowych. Ostatecznie liczbę interesujących układów zredukowano do 49. Najmniejszy chaotyczny oscylator składał się z jednego tranzystora, jednego kondensatora, jednego opornika i dwóch cewek. Większość znalezionych układów wykazywała nietrywialne, chaotyczne zachowania o niekiedy zadziwiającej skali złożoności. Złożoność tę można zwizualizować za pomocą specjalnych wykresów – atraktorów, w geometryczny sposób odwzorowujących charakter zmian aktywności układu w czasie. Analizy statystyczne sygnałów wytwarzanych przez nowe oscylatory nie wykazały jednak śladów dwóch istotnych cech spotykanych w wielu układach samoorganizujących: krytyczności i multifraktalności.

– O multifraktalności można byłoby mówić, gdyby różne fragmenty wykresu obrazującego zmiany napięcia, powiększane w różnych miejscach w różny sposób, ujawniały podobny do pierwotnego charakter zmian. Z kolei z krytycznością mielibyśmy do czynienia, gdyby układ znajdował się w stanie, w którym w każdej chwili mógłby przechodzić z trybu regularnego do chaotycznego bądź odwrotnie. Takich zjawisk w badanych oscylatorach nie zauważyliśmy – tłumaczy prof. dr hab. Stanisław Drożdż (IFJ PAN, Politechnika Krakowska) i dodaje: – Układy w stanie krytycznym na ogół mają więcej możliwości reagowania na zmiany w swoim środowisku. Nic więc dziwnego, że krytyczność jest zjawiskiem dość często spotykanym w naturze. Wiele wskazuje, że układem pracującym w stanie krytycznym jest na przykład ludzki mózg.

Szczególnie ciekawy okazał się jeden ze znalezionych oscylatorów, który generował skoki napięcia przypominające wzbudzenia typowe dla... neuronów. Podobieństwo impulsów było tu uderzające, lecz nie całkowite.

– Nasz sztuczny analog neuronu okazał się znacznie szybszy od swego biologicznego pierwowzoru: impulsy powstawały tysiące razy częściej! Gdyby nie brak krytyczności i multifraktalności, szybkość pracy tego obwodu uprawniałaby do mówienia wręcz o elektronicznym superneuronie. Być może taki układ istnieje, tylko my go jeszcze nie znaleźliśmy. Na razie musimy się więc zadowolić „prawie superneuronem”, komentuje z uśmiechem dr Minati.

Krakowscy fizycy zademonstrowali także, że wskutek łączenia znalezionych układów w pary pojawiają się zachowania o jeszcze większej skali złożoności. Sprzęgnięte układy w jednych sytuacjach pracowały perfekcyjnie synchronicznie, niczym muzycy grający unisono, w innych jeden z obwodów przejmował rolę lidera, w jeszcze innych wzajemne powiązanie oscylatorów było tak zagmatwane, że ujawniało się dopiero po przeprowadzeniu uważnej analizy statystycznej.

W celu przyspieszenia rozwoju badań naukowych nad systemami elektronicznymi imitującymi zachowanie ludzkiego mózgu, schematy wszystkich układów znalezionych przez fizyków z IFJ PAN zostały upublicznione. Zainteresowani mogą je pobrać z adresu: ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-27-012707.

Źródło: IFJ PAN